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Context

Graph Neural Networks (GNNs) have gained tremendous

popularity in recent years due to their impressive performance in

solving graph-structured data, which is very common in real-world

applications such as social network analysis, recommendation

systems, drug discovery, traffic prediction, computer vision,

natural language processing, and finance.

Challenges

Most graph models only handle local interactions, limited to

nodes within a few neighborhoods. Expanding to distant nodes

may lead to over-smoothing and over-squashing. To address this,

transformer and diffusion models are introduced, but not tested

on large graph datasets with long-range interactions.

Goal: We propose GraphHSCN - Heterogenized Spectral Cluster

Network, a new MP-based approach to long-range graph

modeling.

Architecture Diagram For the peptides datasets, we report our experiment on five hidden

layers, although we also obtained similar results for two layers. Two-

layer results are reported for the citation networks. Our architecture

well outperforms traditional message-passing networks on graph-

level tasks, also converging in less epochs. However, it is still

outperformed by the SAN transformer. On node-level tasks, we

observe a lesser performance, as the graphs are larger. Particularly,

the Citeseer dataset has more features than nodes, so graph

coarsening by our architecture could have increased the level of

overfitting.

Resampled Citation Networks (single-graph): Our first

benchmark considers the transductive semi-supervised node

classification task on citation networks. The Cora, CiteSeer, and

PubMed networks' node features are bag-of-words

representations of documents and edges represent citation

links. To build the labeled training dataset, 20 instances of each

class are randomly sampled. 1,000 instances are sampled for the

test dataset, and the remaining 500 for the validation set. Our

benchmarking method repeats training on three different seeds

of splitting on the datasets. With the aim of tailoring these

datasets to the task of long-range model benchmarking, we adopt

the resampling scheme introduced in the Hierarchical Graph

Network paper. This scheme retains the process of selecting 20

examples from each class for training, but rather than doing so

uniformly at random, for a drawn node, it "sanitizes" its k-hop

neighborhood of labels. In this study, we employ a buffer of k = 1.

For future work, we should try for k = 2.

Peptides (multi-graph): Peptides-func and Peptides-struct are

derived from 15,535 peptides, short chains of amino acids,

retrieved from SATPdb. The molecular graph of a peptide is much

larger than that of a small drug-like molecule as each amino acid

is composed of many heavy atoms. The graphs are constructed

such that the nodes correspond to the heavy (non-hydrogen)

atoms of the peptides while the edges represent the bonds

between them. Both datasets use the same set of graphs but

differ in their prediction tasks.

Contribution

Our model achieves state-of-the-art results compared to local

attention-based models for predicative ability on common as well

as datasets benchmarked for long-range tasks.

Complexity

Our model significantly reduced the computational complexity of

SOTA model SAN’s O(n^2) to O(nk^2) while reaching a similar level

of performance.

Future Work

1. Attention mechanisms.

In order to deal with the increasing number of clusters for even

larger graph, we will use attention mechanism to reduce the cost

of computing the cluster-level connections. This might mitigate

the underperformance of Graph-HSCN on the citation network

datasets.

2. Test on more datasets.

We planned to test the remaining datasets from “Long Range

Graph Benchmark” and the circuit board design datasets from

Qualcomm.

3. Run SignNet PE after Spectral Clustering.

More ablation studies are also needed to see if moving certain

components around will affect the performance or space & time

complexity.

4. Run spectral clustering for longer, to minimize the total loss.
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Architecture

In order to improve message-passing neural networks (as opposed to

using attention/improving transformer architecture), we designed our

architecture to be comprised of three main modules:

(1) SignNet position encoding - not leveraged in our experiments, but

we propose this as part of our final architecture, so that each

position can be have a unique representation

(2) Spectral clustering model to jointly optimize the minCUT and

orthogonal losses

(3) Heterogeneous convolutional network to train on relationships

realized from clustering.

SignNet

• O(d) invariant

• Permutation equivariant

• Computational complexity:𝑂 𝑁𝐾𝐹
N is number of nodes, K is K eigenvectors, and F is the hidden

dimension of the learned node feature

Spectral Clustering

• minCUT problem formulation:

• relaxed formulation:

• Optimzied by the joint loss 𝐿𝑢 = 𝐿𝑐 + 𝐿𝑜 , which approximates a

continuous relaxed formulation of the minCUT problem

• Cut loss (𝐿𝑐) =
𝑇𝑟(𝑆𝑇 ෨𝐴𝑆)

𝑇𝑟(𝑆𝑇෩𝐷𝑆)

• Orthogonal loss (𝐿𝑜) = ||
𝑆𝑇𝑆

| 𝑆𝑇𝑆 |𝐹
−

𝐼𝐾

𝐾
||𝐹

(|| · || is Frobenius norm and ෩𝐷 is the degree matrix of ሚ𝐴)

• Computational complexity:

It is dominated by the numerator in Lc , which is O(NK(K + N)). As ሚ𝐴 is

usually sparse, we reduce it to O(K(E + NK)) where E is the number of

non-zero edges in ሚ𝐴.

Heterogeneous GNN

• 3 types of connection – (V2V, L2L, L2V)

• Computational complexity:𝑂(𝐿𝑁𝐹2)
L is number of layer and F is the node feature dimension

Dataset # Graphs # Nodes Avg. # 
Nodes / 
Graph

# 
Classes

# Node 
Features

Task

Citeseer 1 3,312 - 6 3,703 NC

Cora 1 2,708 - 7 1,433 NC

PubMed 1 19,717 - 3 500 NC

Peptides-
func

15,535 - 150 10 9 GC

Peptides-
struct

15,535 - 150 11 9 GR

Figure: Spectral Clustering Example for Peptides
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