
GraphHSCN: Heterogenized Spectral Cluster Network for
Long Range Graph Data

Sirui Tao
University of California San Diego

La Jolla, CA, USA
s1tao@ucsd.edu

Alison Camille Dunning
University of California San Diego

La Jolla, CA, USA
adunning@ucsd.edu

Zhishang Luo
University of California San Diego

La Jolla, CA, USA
zluo@ucsd.edu

ABSTRACT
Graph Neural Networks (GNNs) have gained tremendous
popularity for their potential to effectively learn from graph-
structured data, commonly encountered in real-world applica-
tions. However, most of these models, based on the message-
passing paradigm (interaction within a neighborhood of a
few nodes), can only handle local interactions within a graph.
When we enforce the models to use information from far away
nodes, we will encounter two major issues — oversmoothing
[7] & oversquashing [12]. Architectures such as the trans-
former and diffusion models are introduced to solve this. Yet,
these models are not tested on large graph datasets contain-
ing graphs with large diameters. Although transformers are
powerful, they require significant computational resources for
both training and inference, thereby limiting their scalability,
particularly for graphs with long-term dependencies. Hence,
this paper proposes GraphHSCN—a Heterogenized Spectral
Cluster Network, a message-passing-based approach specifi-
cally designed for capturing long-range interaction informa-
tion (when prediction depends on representations of distant
nodes interacting with each other)[2].

INTRODUCTION

General discussion of graph data
All varieties of real-world data can be represented as graphs,
and the complicated interactions between the node instances in
the graph data are usually very valuable information to learn.
The recent developments of Graph Neural Networks showed
significant success in learning graph data. However, some-
times in the graph data, the interactions between two node
instances might be too complicated to learn. One situation is
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when the two nodes are very far from each other but interact-
ing. Our project tries to help the GNNs learn this long-range
interaction.

Common GNN architectures
Three models are first learned during this quarter. These mod-
els are Graph Convolutional Network [4], Graph Attention
Network [13], and Graph Isomorphism Network [15]. The
idea of GCNs is to learn a function of features on a graph
with a feature matrix as X and a representation of the graph
structure in matrix form, which typically is adjacency matrix
A. Combine these together, and we will have node-level output
as a matrix. We can also, from there, have graph-level output
through global pooling. In this case, each layer in the GCN is
a function that propagates information forward with a weight
matrix. Compared to GCN, Graph Attention Network [4], or
GAT, used the attention mechanism. One key difference is
that, by using the attention mechanism, the more important
node during the aggregation will have a higher weight. And in-
stead of multiple channels used in GCN, GAT used multi-head
attention. As shown in the graph below: [13] Graph Isomor-
phism Network [15], or GIN, used the idea of isomorphism
to build a GNN that generalizes the Weisfeiler-Lehman graph
isomorphism test. In the paper, the authors introduced a theory
of “deep multisets.” They showed that with universal multiset
functions, aggregation schemes over nodes and the multiset of
their neighbors could be built. And this function can be learned
through MLPs. Another type of GNN depends on the idea
of transformers. Introduced by the paper “Rethinking Graph
Transformers with Spectral Attention” [5], Spectral Attention
Network or SAN used the Transformers and its self-attention
mechanism to try to encode the graph structure. SAN attempts
to solve the issue of message-passing GNNs that can’t learn
the long-range interactions in graphs.

Major Challenges
As mentioned in the abstract, two major challenges exist to
prevent models under the "message passing" paradigm from
performing well on long-range graph datasets: oversmoothing
[7] & oversquashing [12].
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Oversmoothing
In the context of long-range interaction graph datasets, over-
smoothing in Graph Neural Networks (GNNs) refers to a
situation where the model loses information about the orig-
inal graph structure and flattens the node embeddings to be
indistinguishable from each other because the information got
diluted when transmitting across a long chain of nodes. This
can result in decreased accuracy and poor performance on
downstream tasks.

In other words, GNNs operate by aggregating and updating
the representations of neighboring nodes iteratively. However,
if the number of iterations is too high or the aggregation opera-
tion is too strong, the embeddings of all nodes become similar,
making it difficult for the model to distinguish between them.

Oversquashing
The phenomena of "oversquashing" occurs in Message Passing
Neural Networks (MPNNs) when the learned task requires
long-range dependencies and the structure of the graph results
in exponentially many long-range neighboring nodes. In such
situations, messages coming from non-adjacent nodes need to
be propagated and compressed into fixed-size vectors, causing
a phenomenon of information oversquashing. The structural
characteristics of the graph responsible for oversquashing are
referred to as "bottlenecks".

These phenomenons are extensively observed empirically, but
the theoretical understanding of them is rather limited.

Relevant works for our architecture
In order to deal with the above-mentioned problem, we studied
existing literature in this domain. Below, we will quickly go
over their main ideas.

Positional Encoding
To begin with, SignNet [6] is designed to be invariant to sign
flips of eigenvectors, which is an important property for spec-
tral graph representation learning because eigenvectors can
have both positive and negative values.

SignNet is built using a feedforward neural network with a
series of linear and non-linear transformations. The input
to the network is the Laplacian eigenvectors of a graph, and
the output is a vector representing a graph embedding. The
network is trained to minimize a loss function that measures
the similarity between the predicted embeddings and the true
embeddings of the graph.

SignNet is shown to be universal under certain conditions,
meaning that it can approximate any continuous function of
eigenvectors with the desired invariances. The authors also
demonstrate that SignNet outperforms existing spectral graph
representation methods on several benchmark datasets.

Global shortcuts
Then, the paper "FoSR" [3] proposes a computationally effi-
cient algorithm for graph neural networks (GNNs) that pre-
vents two common problems in GNNs: oversquashing and
oversmoothing.

As mentioned in the "Major Challenges" sections, oversquash-
ing is a problem that arises when GNNs pass messages along

the edges of the graph, leading to inefficient information prop-
agation for certain graph topologies. This problem is linked to
the curvature and spectral gap of the graph. Oversmoothing,
on the other hand, occurs when adding edges to the message-
passing graph can lead to increasingly similar node represen-
tations.

The proposed algorithm uses spectral expansion to systemati-
cally add edges to the graph and prevent oversquashing, while
a relational architecture is used to preserve the original graph
structure and prevent oversmoothing. The authors demonstrate
experimentally that their algorithm outperforms existing graph
rewiring methods in several graph classification tasks.

In summary, "FoSR" proposes an algorithm for GNNs that ad-
dresses two common problems in GNNs - oversquashing and
oversmoothing - by using spectral expansion and a relational
architecture.

Spectral clustering
In order to solve the issue of transformers being too expan-
sive to compute, especially for larger graphs, we explored
the method from "Spectral Clustering with Graph Neural Net-
works for Graph Pooling" [1] to decrease the workload for the
attention-based procedures.

This paper proposes a new graph clustering method that can
be used to implement pooling operations in Graph Neural Net-
works (GNNs). Though Spectral clustering (SC) is a popular
technique to find strongly connected communities on a graph,
but it can be expensive to compute the eigendecomposition of
the Laplacian, and clustering results are graph-specific, mean-
ing that pooling methods based on SC must perform a new
optimization for each new sample.

To address these limitations, the paper proposes a continuous
relaxation of the normalized minCUT problem and trains a
GNN to compute cluster assignments that minimize this objec-
tive. The proposed method is differentiable, does not require
computing the spectral decomposition, and learns a cluster-
ing function that can be quickly evaluated on out-of-sample
graphs.

The authors use this clustering method to design a graph pool-
ing operator that overcomes some important limitations of
state-of-the-art graph pooling techniques and achieves the best
performance in several supervised and unsupervised tasks.

In summary, the paper proposes a new differentiable graph
clustering method that can be used in GNNs to implement
pooling operations without requiring the expensive computa-
tion of spectral decomposition. The proposed pooling operator
achieves state-of-the-art performance in several tasks.

Heterogeneous graph
Later, we found the Heterogeneous graph architecture [11]
to help our model learn from both the original graph and the
virtual nodes and edged created from our clustering results.

The Heterogeneous graph paper describes an approach for
analyzing and mining knowledge from interconnected, multi-
typed data, including relational databases, that form complex
and semi-structured information networks.



The authors argue that most network science researchers focus
on homogeneous networks without distinguishing different
types of objects and links, which is not suitable for complex,
multi-typed data in the real world.

The paper proposes a structural analysis approach for mining
useful knowledge from such networks by leveraging the rich
semantic meaning of structural types of objects and links in
the networks. The authors summarize a set of methodologies
that can effectively and efficiently mine knowledge from such
information networks and point out some promising research
directions.

In summary, the paper presents a framework for analyzing
and mining knowledge from complex, heterogeneous infor-
mation networks, which are common in the real world but
often neglected in network science research. The proposed
approach leverages the rich semantic meaning of structural
types of objects and links in the networks and provides a set
of methodologies for effectively and efficiently mining useful
knowledge from such networks.

Attention
After the extraction of cluster-level features, we also want to
explore if we can use the attention mechanism to find addi-
tional connections between clusters. Here, for larger clusters,
we used sparse attention [17] to make the computation more
efficient. However, some graph datasets have rather small clus-
ters after the second procedure so we also explored whether
global attention mechanisms such as set2set [14] could further
improve the performance. We will give more details about
what sparse attention and set2set are in the following two
paragraphs.

Here, sparse attention refers to Sparse Graph Attention Net-
works (SGATs)[17], which are a type of Graph Neural Net-
work (GNN) that improve the performance of graph learning
tasks by learning to assign sparse attention coefficients over
a graph’s neighbors. This sparsity is achieved through an L0
-norm regularization, which allows SGATs to identify noisy or
task-irrelevant edges and perform feature aggregation on the
most informative neighbors. SGATs have been shown to out-
perform traditional GNNs, such as Graph Attention Networks
(GATs), on both assortative and disassortative graphs, while
removing about 50-80% of edges from large assortative graphs
without sacrificing classification accuracy. SGATs are the first
graph learning algorithm to demonstrate significant redundan-
cies in graphs, and their edge-sparsified graphs can achieve
similar or sometimes even higher predictive performance than
original graphs.

Set2Set [14] is a neural network architecture that aggregates
information from node-level features in a graph to make
graph-level predictions. It does this by adding a permutation-
invariant operation that can aggregate information from all
node features into a fixed-length vector, which is used to make
the final prediction. It works by iteratively refining a set-level
representation of the input graph, which is initialized with the
node-level features.

Following the general flow of GraphGPS (General Powerful
Scalable Graph Transformers) [8], we concatenate the output

from the sparse attention output on the cluster level with the
GCN output feature on the node level. These concatenated
results are passed through a Multi-layer Perceptron to create a
final prediction.

Dataset
Our benchmark datasets, described below, span both levels of
graph learning. We compare our architecture’s performance
to those of these common message-passing graph neural net-
works: GCN, GAT, and GIN. Additionally, we compare it
with SAN, [5], a transformer architecture, the first of which
to consider the full spectrum of eigenvalues for positional
encoding.

Node Classification: Resampled Citation Datasets
Our first benchmark considers the transductive semi-
supervised node classification task on citation networks. The
Cora, CiteSeer, and PubMed networks [16] node features are
bag-of-words representations of documents and edges repre-
sent citation links. The goal of this task is to assign a class
to each document. To build the labeled training dataset, 20
instances of each class are randomly sampled. 1,000 instances
are sampled for the test dataset, and the remaining 500 for the
validation set. Our benchmarking method repeats training on
three different seeds of splitting on the datasets. The citation
networks are summarized in Table 1.

With the aim of tailoring these datasets to the task of long-
range model benchmarking, we adopt the resampling scheme
introduced in the Hierarchical Graph Network paper [9]. This
scheme retains the process of selecting 20 examples from each
class for training, but rather than doing so uniformly at random,
for a drawn node, it "sanitizes" its k-hop neighborhood of
labels. Due to the nature of a citation network, these datasets
have high homophily, meaning that most of a node’s first-
order neighbors belong to the same class. Because of this,
it is necessary to ensure the model carries a large enough
receptive field to reach beyond this neighborhood, so that
correct labels of the k-th order neighbors aren’t "imprinted"
in their representations. In this study, we employ a buffer of
k = 1 and later hope to evaluate with k = 2. These are the
same values as in the HGNet paper.

Graph-Level Prediction: Peptides Functional and Structural

Dataset
Peptides are short chains of amino acids, which are abundant
in nature and serve various important biological functions.
Despite being shorter than proteins, peptides have a molec-
ular structure that is significantly larger than that of a small
drug-like molecule, since each amino acid contains multiple
heavy atoms. The peptides were sourced from the SATPdb
database [10], which provides comprehensive information on
the sequence, 3D structure, function, and molecular graph of
each peptide. The graphs represent one-dimensional chains of
amino acids, emphasizing the need for the model to accurately
identify the location of each amino acid within the graph.

Peptides functional is for Graph Classification task and Pep-
tides Structural for Graph Regression task. The graphs in both



Table 1. Citation network dataset statistics.
Dataset # Nodes # Classes # Edges

Citeseer 3,312 6 4,732
Cora 2,708 7 5,429
PubMed 19,717 3 44,338

datasets are correspond to peptides chain structures and are de-
rived in such way that the graphs have large diameters relative
to their sizes. Both datasets have 15535 graphs. [2]

We chose these two datasets in order to evaluate the GNNs’
abilities to learn long-range interactions for Graph-level tasks.

METHOD
In the architecture section, we detailed each component within
our model and in the dataset & benchmark section, we listed
the datasets we used and the SOTA models we compared our
model against.

Architecture
SignNet
In the architecture we determined to use SignNet to compute
the positional encoding for each graph. We pre-computed
the top 50 eigenvalues and corresponding eigenvectors of the
laplacian matrix L of each graph. Then we used the com-
puted top 50 eigenvectors (Nx50) as the input for the SignNet.
The SignNet will be a function f : Rn×k → Rn×d where d is
arbitrary dimentions.

Spectral clustering
We trained a GNN model using pytorch-geometric and used
the loss functions as the sum of minCUT Loss and orthogonal
Loss to compute the cluster assignment for each graphs. We
trained for each graph for about 50 iterations with a early stop
threshold of loss decrease as 0.001. With the trained model
we get the cluster assignments which we used in the next step
to create virtual nodes and construct the heterogenous graph
dataset.

Heterogeneous graph
From the original graphs after we trained and computed the
clusters we will add one new virtual node for each of the clus-
ter. For K clusters, where K is a arbitrary number, we will add
K new virtual nodes. For each virtual node, we will add M
new edges between all the nodes in one cluster and the new
virtual node, where M is the number of the nodes in a clus-
ter. After virtual nodes connect the local nodes, we will fully
connect all the virtual nodes. To address the different proper-
ties of the edges from local nodes to local nodes, the edges
from local nodes to virtual nodes and the edges from virtual
nodes to virtual nodes, we applied the idea of Heterogenous
Graph Neural Network by using different message passing
convolution layers for different types of edges. [11]

Finally, here is the flow of our architecture diagram [Figure
1].

RESULTS
Because of the limited time and computational resources, we
could not run the experiment for all the datasets or even one

Architecture Diagram

Local to 
virtual

Local to
local

Virtual to virtual GraphConv

GraphConv

GraphConv

Heterogenize, pass into Hetero conv. net:

Optional MLP
Graph- or 
node-level 
predictions

Clustered graph to coarsen representation (dashed lines 
represent connection to virtual node.)

Jointly optimize MP-GNN and MLP to minimize:

SignNet positional encoding using DeepSets

Node features, adj. matrix

Laplacian 
eigenvectors

Figure 1. Architecture diagram for GraphHSCN



Figure 2. Results on the resampled citation datasets

Figure 3. Results on the peptides datasets

whole dataset. Therefore, we chose the dataset Peptides-func
with a task of multi-label graph classification and citation
dataset. We used Average Precision as suggested by the au-
thors to analyze the results of our experiments. Our baseline
models are GCN, GAT, and GIN with the resampled citation
dataset graph [Figure 2].

After that, we also measure the models’ performance in two
of the datasets (Peptides-func & Peptides-struct) from LRGB
[2]. Figure 3 shows their performance.

As figures indicate, we achieved a similar performance as
SAN for peptides datasets, which is better than other common
Message-passing GNNs. Yet, we are way more efficient than
SAN.

DISCUSSION
As our model is not performing as well on the resampled
citation datasets, we proposes the following potential causes:

• The Cora dataset originally might not contain very impor-
tant long-range interactions, therefore after re-sample it’s

still not sure if the long-range interactions now contained
in the graphs are strong enough to have great influences on
the predictions.

• Cora dataset contains one single graph for node-level tasks.
While our models work well for graph-level tasks, the
cluster-method with the fully connected virtual nodes might
lead the graph to another side of over-smoothing. While we
used heterogenous GNN to try to address this possible issue,
that might still has an influence on node-level predictions
tasks.

There are still some limitations too. First of all, it will probably
not scale well when there are many clusters. For a larger
number of cluster, we could use sparse attention to better
model the interaction between these clusters. Second, while
we used several different datasets, the graphs’ sizes in peptides
datasets are relatively small. Last limitation is that the number
of the clusters has a large influence on the final performance
of the model and currently we have no better method but
cross-validation to chose a best cluter number. In the future
we will add the sparse attention mechanism along with more
experiments on graphs that are larger. For the cluster numbers
K we need a method to analyze the exact affect of the number
of the clusters to the performances of the models on different
graphs.

CONCLUSION
In this research we explored and proposed a new architecture
to help Message Passsing Neural Network to learn long range
interactions. We utilized the ideas of Spectral Clustering and
Heterogenous Graph Neural Network to decrease the diame-
ters of the of the new graph while maintain the original graph’s
topological structure unchanged. We compared the new results
with the baseline models including MLP and other GNNs and
confirmed our model’s improvements in terms of learning the
graphs with long-range interactions. Another contribution for
our model is to mitigate the issue of run-time complexity of
the models that relied on fully connected graphs’ attention
mechanism and transformer like SAN. Our model showed
comparable performances with SAN but with much smaller
run-time complexity.
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APPENDIX
Github repo: https://github.com/camille-004/Graph-HSCN
Website: https://graphhscn.github.io/
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